SOME PROPERTIES OF α-HARMONIC MEASURE

DIMITRIOS BETSAKOS

Abstract. The α-harmonic measure is the hitting distribution of symmetric α-stable processes upon exiting an open set in \mathbb{R}^n ($0 < \alpha < 2$, $n \geq 2$). It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove some geometric estimates for α-harmonic measure.

1. Introduction

In the 1930’s, O.Frostman and M.Riesz developed a potential theory on \mathbb{R}^n, $n \geq 2$, based on the Riesz kernel

$$k_\alpha(x) = \frac{A(n, \alpha)}{|x|^{n-\alpha}}, \quad x \in \mathbb{R}^n \setminus \{0\},$$

where $0 < \alpha < 2$ and $A(n, \alpha)$ is a constant. When $\alpha = 2$, the Riesz kernel coincides with the kernel of the classical potential theory, the Newtonian kernel ($n \geq 3$).

The α-harmonic functions are defined by a mean value property (involving the parameter α), analogous to the classical one. Equivalently, they are the solutions of the equation $\Delta^{\alpha/2} u = 0$, where $\Delta^{\alpha/2}$ is the fractional Laplacian, a non-local integro-differential operator.

A function $u : \mathbb{R}^n \to \mathbb{R}$ which is α-harmonic in an open set D is determined by its exterior values (its values in $D^c := \mathbb{R}^n \setminus D$). If B is a Borel set in D^c, the α-harmonic measure of B with respect to D is the α-harmonic function u in D with exterior values $u = \chi_B$ on D^c. The α-harmonic measure of B with respect to D, evaluated at the point $x \in \mathbb{R}^n$, will be denoted by $\omega^\alpha_D(x, B)$. For fixed $x \in D$, $\omega^\alpha_D(x, \cdot)$ is a Borel probability measure on D^c.

Both classical and α-harmonic measures have symmetry properties and satisfy the Carleman principle (domain monotonicity) and the Harnack principle. The latter implies that if $\omega^\alpha_D(x, B) = 0$ for some $x \in D$, then $\omega^\alpha_D(y, B) = 0$ for all $y \in D$; we say then that B is a D-null set.

The classical harmonic measure is defined (as function) in a domain D and is supported (as measure) on the boundary of D. The α-harmonic measure is defined (as function) in whole \mathbb{R}^n and is supported (as measure) in the exterior of D. These properties become transparent when are viewed from the probabilistic point of view. The classical harmonic measure is the hitting distribution of Brownian motion upon exiting D, while the α-harmonic measure is the hitting distribution of symmetric α-stable process. This is a Hunt process with discontinuous paths. Thus its paths may jump from one component of D to another and may hit D^c (upon exiting D) at points of $(\partial D)^c$ and not necessarily at points of ∂D.

Date: August 28, 2007.

1991 Mathematics Subject Classification. 31B15, 31C05.

Key words and phrases. α-harmonic measure, Riesz capacity.

In Section 3, we prove some geometric estimates for \(\alpha \)-harmonic measure involving symmetric or polarized open sets \(D \). Although the corresponding inequalities for classical harmonic measure are almost trivial, we will see that the proofs for \(\alpha \)-harmonic measure are not simple. Theorems 1 and 2 were proved in [2] under more restrictive conditions; (in [2, Theorem 3], the open set \(D \) is assumed to be bounded with boundary satisfying an exterior cone condition).

2. Background

2.1. \(\alpha \)-harmonic functions. The M. Riesz kernels in \(\mathbb{R}^n \), \(n \geq 2 \), are the functions

\[
 k_{\alpha}(x) = \frac{A(n, \alpha)}{|x|^{n-\alpha}}, \quad x \in \mathbb{R}^n \setminus \{0\},
\]

where \(0 < \alpha < n \) and

\[
 A(n, \gamma) = \frac{\Gamma\left(\frac{n-\gamma}{2}\right)}{\Gamma\left(\frac{\gamma}{2}\right)2^{\gamma} \pi^{n/2}}, \quad -n < \gamma < n, \quad \gamma \neq 0, -2, -4, \ldots.
\]

These kernels include as special and limiting cases the kernels of the classical potential theory: the Newtonian kernel \((n \geq 3, \alpha = 2) \) and the logarithmic kernel \((n = 2, \alpha \to 2) \); see [12, Ch.I]. From now on, we assume that \(0 < \alpha < 2 \). We denote the \(n \)-dimensional Lebesgue measure by \(m_n \).

Definition 1. Let \(D \) be an open set in \(\mathbb{R}^n \), \(n \geq 2 \). A function \(u : \mathbb{R}^n \to \mathbb{R} \) is called \(\alpha \)-harmonic in \(D \) if

(a) \(u \) is continuous in \(D \);
(b) \(u \) is in \(\mathcal{L}^1 \); that is, \(u \) is locally integrable on \(\mathbb{R}^n \) and

\[
 \int_{|x| > 1} \frac{|u(x)|}{|x|^{n+\alpha}} m_n(dx) < \infty;
\]

(c) for every ball \(B(x_0, r) \) with closure in \(D \),

\[
 u(x_0) = \int_{\mathbb{R}^n} u(x) e_{\alpha}^r(x - x_0) \, m_n(dx),
\]
where
\[\varepsilon^{(r)}(x) = \begin{cases} \frac{\Gamma(n/2) \sin(\pi \alpha/2)}{\pi^{n/2} \Gamma(n/2 + 1)} \frac{r^n}{|x|^n}, & |x| > r, \\ 0, & |x| < r. \end{cases} \]

Definition 2. Let \(f \in \mathcal{L}^1 \). For \(\varepsilon > 0 \) and \(x \in \mathbb{R}^n \), we define
\[\Delta^{\alpha/2} f(x) = \mathcal{A}(n, -\alpha) \int_{|y-x|>\varepsilon} \frac{f(y) - f(x)}{|y-x|^{n+\alpha}} m_n(dy) \]
and
\[\Delta^{\alpha/2} f(x) = \lim_{\varepsilon \downarrow 0} \Delta^{\alpha/2} f(x), \]
whenever the limit exists.

By [6, Theorem 3.9], a function \(u \) defined on \(\mathbb{R}^n \) is \(\alpha \)-harmonic in an open set \(D \) if and only if it is continuous in \(D \) and \(\Delta^{\alpha/2} u = 0 \) in \(D \).

2.2. The Dirichlet problem for \(\alpha \)-harmonic functions. (See [12, Ch.IV], [3, Ch.VII], [15]). The Perron-Wiener-Brelot method can be applied for the solution of the Dirichlet problem for \(\alpha \)-harmonic functions. Let \(D \) be an open set in \(\mathbb{R}^n \).

An \(\alpha \)-subharmonic function in \(D \) is an \(\mathcal{L}^1 \) function which is upper semicontinuous in \(D \) and satisfies the inequality
\[u(x_o) \leq \int_{\mathbb{R}^n} u(x) \varepsilon^{(r)}(x-x_o) m_n(dx), \]
for every ball \(B(x_o, r) \) with closure in \(D \).

Let \(C(D^c) \) be the class of functions \(f \) continuous in \(D^c \) satisfying
\[\int_{D^c \cap \{|x|>1\}} \frac{|f(x)|}{|x|^{n+\alpha}} m_n(dx) < \infty, \]
and \(H(D) \) be the class of functions on \(\mathbb{R}^n \), \(\alpha \)-harmonic in \(D \). The lower Perron family of a function \(f \in C(D^c) \) is the family \(\mathcal{P}_f \) of all functions \(u \) which are \(\alpha \)-subharmonic in \(D \) and satisfy the inequalities \(u \leq f \) in \((D)^c \) and
\[\limsup_{D^c \ni x \to \zeta} u(x) \leq f(\zeta), \quad \forall \zeta \in \partial D. \]

Define
\[H_f(x) := \sup\{u(x) : u \in \mathcal{P}_f\}, \quad x \in \mathbb{R}^n. \]

Then \(H_f \) is \(\alpha \)-harmonic in \(D \). The definition of regular and irregular boundary points and their characterization by Wiener’s criterion are similar to their classical analogs. The function \(H_f \) has limit \(f(\zeta) \) at each regular boundary point \(\zeta \). We say that \(H_f \) is the Perron solution of the Dirichlet problem in \(D \) with exterior values \(f \).

The operator \(f \mapsto H_f \) is a positive linear operator from \(C(D^c) \) into \(H(D) \). Hence for each \(x \in \mathbb{R}^n \), there is a measure \(\omega^D_n(x, \cdot) \) on \(D^c \) such that
\[H_f(x) = \int_{D^c} f(y) \omega^D_n(x, dy), \quad x \in \mathbb{R}^n. \]
This measure is the \(\alpha \)-harmonic measure for \(D \) evaluated at \(x \).
In a similar manner, one can define the upper and the lower Perron family for any Borel function on D^c and consider the corresponding generalized solution for the Dirichlet problem; see [3] for more details.

2.3. **Symmetric stable processes.** (See [4], [5], [6], [10], [11], [14], [3], [8]). The fractional Laplacian $\Delta^{\alpha/2}$ is the characteristic operator of the symmetric α-stable process $\{X_t, t \in [0, \infty)\}$ in \mathbb{R}^n. This is a Lévy process (homogeneous and with independent increments) with transition density $p_t(x, y) = p_t(y, x) = p_t(x - y)$ (relative to the Lebesgue measure) uniquely determined by its Fourier transform

$$e^{ix\xi} p_t(x) m_n(dx) = e^{-t|\xi|^\alpha}. \quad (2.9)$$

When $\alpha = 2$, we get a Brownian motion running at twice the speed. The probability measures and the corresponding expectations of the process $\{X_t\}$ starting at $x \in \mathbb{R}^n$ will be denoted by P^x and E^x.

The symmetric α-stable process $\{X_t\}$ is a strong Feller and a Hunt process. For $A \subset \mathbb{R}^n$, we put

$$T^A = \inf\{t > 0 : X_t \notin A\}, \quad (2.10)$$

the first exit time from A. A Borel function u defined on \mathbb{R}^n is α-harmonic in an open set $D \subset \mathbb{R}^n$ if and only if

$$u(x) = E^x u(X_{T^D}), \quad x \in U, \quad (2.11)$$

for every bounded open set U with closure \overline{U} contained in D. If $D \subset \mathbb{R}^n$ is open and B is a Borel subset of D^c, then

$$\omega^D_\alpha(x, B) = P^x(X_{T^D} \in B), \quad x \in \mathbb{R}^n. \quad (2.12)$$

2.4. **Riesz capacity.** (See [12, Chapter II]). If K is a compact set in \mathbb{R}^n and μ is a probability Borel measure on K, the α-energy of μ is

$$I_\alpha(\mu) = \int_K \int_K k_\alpha(x - y) \mu(dx) \mu(dy). \quad (2.13)$$

The α-capacity of K is defined by

$$C_\alpha(K) = \left(\inf_{\mu} I_\alpha(\mu) \right)^{-1}, \quad (2.14)$$

where the infimum is taken over all probability Borel measures on K.

For a Borel set $E \subset \mathbb{R}^n$, we define

$$C_\alpha(E) = \sup\{C_\alpha(K) : K \subset E \text{ compact}\}. \quad (2.15)$$

By Choquet capacitability theorem [12, Theorem 2.8, p.156],

$$C_\alpha(E) = \inf\{C_\alpha(G) : E \subset G \text{ open}\}. \quad (2.16)$$

The α-capacity is a geometric quantity because of its expression as transfinite diameter; see [12, Ch.II, §3]. It can also be characterized in terms of symmetric stable processes; see references in [2].
2.5. Null sets. There is no known geometric characterization of null sets for \(\alpha \)-harmonic measure. If a boundary set has zero \(\alpha \)-capacity, then it has also zero \(\alpha \)-harmonic measure; see [12]. The following lemmas provide more refined necessary or sufficient conditions.

Lemma 1. [15, Theorem 1'] Let \(D \) be an open set in \(\mathbb{R}^n \) and \(F \) be a subset of \(\partial D \) with \(m_{\alpha}(F) = 0 \). Suppose that there exists \(c > 0 \) such that for all \(x \in D \),
\[
m_{\alpha}(D^c \cap B(x, 2d(x, F))) > c d(x, F)^n.
\]
Then \(F \) is \(D \)-null.

Lemma 2. [15, Theorem 3] Let \(D \) be an open set in \(\mathbb{R}^n \) and \(F \) be a subset of \(\partial D \) with \(C_{\alpha}(F) > 0 \). If
\[
\lim_{r \to 0} C_{\alpha}(\{x \in D^c : 0 < d(x, F) \leq r\}) = 0,
\]
then \(F \) is not \(D \)-null.

Lemma 3. Suppose that \(D \) and \(\Omega \) are open sets in \(\mathbb{R}^n \) with \(D \subset \Omega \). Let \(A = \Omega \setminus D \) and assume that \(A \) is \(D \)-null. Then \(C_{\alpha}(A) = 0 \).

Proof. By Choquet capacitability theorem [12, Theorem 2.8, p.156], \(A \) is capacitatable. Assume first that \(A \) is compact. Then \(d(A, \partial \Omega) > 0 \). For \(0 < r < d(A, \partial \Omega) \), the set
\[
\{x \in D^c : 0 < d(x, A) \leq r\}
\]
is empty. By Lemma 2, \(C_{\alpha}(A) = 0 \).

Next assume that \(A \) is bounded. Let
\[
A_k = \left\{ x \in A : d(x, \partial \Omega) \geq \frac{1}{k} \right\}, \quad k \in \mathbb{N}.
\]
Then \(A_k \) is compact. Hence \(C_{\alpha}(A_k) = 0 \) for all \(k \). By the subadditivity of \(\alpha \)-capacity, \(C_{\alpha}(A) = 0 \). Finally, for unbounded \(A \) we consider the sequence of bounded sets
\[
A_m = \{x \in A : |x| \leq m\}, \quad m \in \mathbb{N}
\]
and conclude as above that \(C_{\alpha}(A) = 0 \). \(\Box \)

2.6. The minimum principle in Riesz potential theory. We will need some extensions of the minimum principle for \(\alpha \)-superharmonic functions; see [12, pp. 115, 183].

Lemma 4. Let \(D \) be an open set in \(\mathbb{R}^n \) and \(u : \mathbb{R}^n \to (-\infty, +\infty] \) be a function which is \(\alpha \)-superharmonic in \(D \) and lower semicontinuous on \(\overline{D} \). Suppose that there exists a constant \(M \in \mathbb{R} \) such that \(u \geq M \) in \(D^c \). Then \(u \geq M \) in \(\mathbb{R}^n \). If \(u(x_o) = M \) for some \(x_o \in D \), then \(u = M \) in \(\mathbb{R}^n \).
Define \(v(x) = u(x) - M, \ x \in \mathbb{R}^n \). Then \(v \) is lower semicontinuous on \(\partial D \).

Also, for \(\zeta \in \partial D \),

\[
\liminf_{\partial D \ni x \to \zeta} v(x) = \liminf_{\partial D \ni x \to \zeta} u(x) - M \geq u(\zeta) - M \geq 0.
\]

Suppose that there exists a point \(x_0 \in D \) such that

\[
\min_{\partial D} v = v(x_0) < 0.
\]

Take \(r > 0 \) sufficiently small so that the ball of radius \(r \), centered at \(x_o \), lies in \(D \). Then \(v(x_0) < \varepsilon_{\alpha,x_0}^{(r)} \); indeed, if \(v(x_0) = \varepsilon_{\alpha,x_0}^{(r)} \), then \(v = v(x_0) < 0 \) a.e. in \(\{|x-x_o| > r\} \), and therefore

\[
\liminf_{x \to \zeta \in D} v(x) \leq v(x_0) < 0,
\]

contradicting (2.17). Hence

\[
v(x_0) < \varepsilon_{\alpha,x_0}^{(r)} \varepsilon \varepsilon_{\alpha,x_0}^{(r)} v = \varepsilon_{\alpha,x_0}^{(r)} u - M \leq u(x_0) - M = v(x_0),
\]

which is absurd. We conclude that the minimum of \(v \) on \(\partial D \) is non-negative and therefore \(v(x) \geq M \) for all \(x \in \mathbb{R}^n \).

If \(u(x_o) = M \) for some \(x_o \in D \), then for all sufficiently small \(r > 0 \),

\[
0 = v(x_0) \geq \varepsilon_{\alpha,x_0}^{(r)} v.
\]

This implies \(v = 0 \) a.e. in \(\mathbb{R}^n \); that is, \(u = M \) a.e. in \(\mathbb{R}^n \). If \(x \in D \), then [12, p.114]

\[
u(x) = \lim_{r \to 0} \varepsilon_{\alpha,x_0}^{(r)} u = M.
\]

Hence \(u = M \) in \(D \).

Lemma 5. Let \(D \) be an open set in \(\mathbb{R}^n \) and \(u : \mathbb{R}^n \to (-\infty, +\infty] \) be a function \(\alpha \)-superharmonic in \(D \). Assume that

(i) \(u \) is bounded below in \(D \);

(ii) \(u \) is lower semicontinuous in \(\partial D \setminus E \), where \(E \) is a subset of \(\partial D \) with \(\infty \notin E \) and \(C_\alpha(E) = 0 \); (of course, if \(E \subseteq \mathbb{R}^n \) then \(\infty \notin E \));

(iii) \(\liminf_{\partial D \ni x \to \zeta} u(x) \geq M \), for some \(M \in \mathbb{R} \) and all \(\zeta \in \partial D \setminus E \);

(iv) \(u(x) \geq M \), for all \(x \in (\partial D)^c \).

Then \(u(x) \geq M \), for all \(x \in D \). Moreover, if \(u(x_o) = M \) for some \(x_o \in D \), then \(u = M \) in \(D \).

Proof. For \(n \in \mathbb{N} \), let \(A_n \) be an open set such that \(E \subseteq A_n \) and \(C_\alpha(A_n) \leq \frac{1}{n} \). Then the set \(E_1 := \bigcap_{n=1}^\infty A_n \) is a \(G_\delta \)-set such that \(E \subseteq E_1 \) and \(C_\alpha(E_1) = 0 \).

There exists a measure \(\lambda \) on \(\mathbb{R}^n \) such that the Riesz potential \(U_\lambda^\alpha \) of \(\lambda \) has the following properties (see [12, p. 179]):

\[
U_\lambda^\alpha(x) = \infty, \ \forall x \in E_1 \cap \partial D \text{ and } U_\lambda^\alpha(x) < \infty, \ \forall x \notin E_1 \cap \partial D.
\]

For \(\varepsilon > 0 \), define

\[
u_1(x) = u(x) + \varepsilon U_\lambda^\alpha(x), \ x \in \mathbb{R}^n.
\]

The function \(u_1 \) is \(\alpha \)-superharmonic in \(D \). Moreover,

\[
\liminf_{\partial D \ni x \to \zeta} u_1(x) \geq M, \ \forall \zeta \in \partial D
\]
because $U_\alpha^l(x) \geq 0$, $\forall x \in \mathbb{R}^n$ and $U_\alpha^l(x) = \infty$, $\forall x \in E_1 \cap \partial D$. Also, since U_α^l is lower semicontinuous in \mathbb{R}^n and

$$
\liminf_{x=\infty, \zeta \in E} [u(x) + \varepsilon U_\alpha^l(x)] = +\infty = u(\zeta) + \varepsilon U_\alpha^l(\zeta),
$$

u_1 is lower semicontinuous in \overline{D}.

We apply Lemma 4 to the function u_1 and conclude

$$u_1(x) = u(x) + \varepsilon U_\alpha^l(x) \geq M, \forall x \in D.$$

Since $\varepsilon > 0$ is arbitrary and $U_\alpha^l < \infty$ in D, it follows that $u \geq M$ in D.

Suppose next that $u(x_0) = M$ for some $x_0 \in D$. By the α-mean value inequality $M = u(x_0) \geq \varepsilon U_\alpha^l(x_0)$, for all sufficiently small $r > 0$. It follows that $u = M$ a.e. in \mathbb{R}^n. If $x \in D$, then [12, p.114]

$$u(x) = \lim_{r \to 0} \varepsilon U_\alpha^l(x) = M.$$

Hence $u = M$ in D.

3. SOME GEOMETRIC PROPERTIES OF α-HARMONIC MEASURE

Let $\Pi = \{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_n = 0\}$. For $E \subset \mathbb{R}^n$, we denote by \widehat{E} the reflection of E in the $(n-1)$-dimensional plane Π. Thus we have

$$\widehat{E} = \{(x_1, \ldots, x_{n-1}, x_n) : (x_1, \ldots, x_{n-1}, -x_n) \in E\}.$$

We will also use the following notation: if $x = (x_1, \ldots, x_{n-1}, x_n)$ then $\hat{x} := (x_1, \ldots, x_{n-1}, -x_n)$; $E_+ := \{(x_1, \ldots, x_{n-1}, x_n) \in E : x_n > 0\}$; $E_\alpha := E \cap \Pi$; $E_- := \{(x_1, \ldots, x_{n-1}, x_n) \in E : x_n < 0\}$.

Let E be any set in \mathbb{R}^n. We divide E into three subsets S, U, V:

$$
\begin{align*}
S &= S_E = \{x \in E : \hat{x} \in E\} = E \cap \widehat{E}, \\
U &= U_E = \{x \in E : x \in E_+, \hat{x} \notin E\} = E_+ \setminus S_E, \\
V &= V_E = \{x \in E : x \in E_-, \hat{x} \notin E\} = E_- \setminus S_E.
\end{align*}
$$

S is the symmetric part of E, U is the upper non-symmetric part of E, and V is the lower non-symmetric part of E. The sets S, U, V are disjoint and $E = S \cup U \cup V$. Note that if E is open, then its symmetric part S is always open, while the sets U, V are not necessarily open. We say that E is symmetric with respect to Π if $U = V = \emptyset$ and hence $E = S$. We say that E is polarized with respect to Π if $V = \emptyset$ and hence $E = S \cup U$.

Theorem 1. Let S be an open set in \mathbb{R}^n. Suppose that S is symmetric with respect to Π. Let $B \subset \mathbb{R}^n \cap S^c$ be a Borel set. Then

(i) $\omega^S_\alpha(x, B) \geq \omega^S_\alpha(\hat{x}, B)$, $x \in \mathbb{R}^n$,

(ii) $\omega^S_\alpha(x, B) \geq \omega^S_\alpha(x, \hat{B})$, $x \in \mathbb{R}^n$.

Figure 1: An illustration for Theorem 1.
Proof. For $x \in \mathbb{R}^n_+ \setminus S_+$, the inequalities (i) and (ii) are trivial. So we prove them for $x = s \in S_+$. Because of symmetry, the inequalities (i) and (ii) are equivalent. So we prove only the first one. By the inner regularity of α-harmonic measure, we may and do assume that B is a compact set in $\mathbb{R}^n_+ \cap S^c$. Take a decreasing sequence of compactly supported continuous functions $f_k : S^c \to [0,1]$ with $\text{supp} f_k \downarrow B$, $f_k \downarrow \chi_B$ and $f_k = 0$ in $(S^c)_-$. Then for the sequence of functions
\[H_{f_k}(x) := \int_{S^c} f_k(y) \omega^S_{\alpha}(x,dy), \ x \in \mathbb{R}^n,\]
we have $H_{f_k}(s) \downarrow \omega^S_{\alpha}(s,B)$, $s \in S$. Therefore it suffices to prove that
\[H_{f_k}(s) \geq H_k(s), \ s \in S_+, \ k \in \mathbb{N}. \tag{3.1}\]

Let E be the set of irregular points of ∂S. By a classical result (see e.g. [12, p.296]), $C_\alpha(E) = 0$. There exists a G_δ-set $E_1 \supset E$ with $C_\alpha(E_1) = 0$ and a measure λ on \mathbb{R}^n such that (see [12, p. 179]):
\[U_\lambda(x) = \infty, \ \forall x \in E_1 \cap \partial D \quad \text{and} \quad U_\lambda(x) < \infty, \ \forall x \in \mathbb{R}^n \setminus (E_1 \cup \partial D).\]

Because of symmetry, we may also assume that $U_\lambda(x) = U_\lambda(\tilde{x})$. Fix $k \in \mathbb{N}$ and $\varepsilon > 0$ and define
\[v(x) = H_{f_k}(x) - H_k(x) + \varepsilon U_\lambda(x), \ x \in \mathbb{R}^n. \tag{3.2}\]

We look at the boundary values of v in S_+. Let $\zeta \in \partial(S_+)$. Case 1: $\zeta \in S_-$.

Then
\[\liminf_{S_+ \ni s \to \zeta} v(s) = \liminf_{S_+ \ni s \to \zeta} \varepsilon U_\lambda(s) \geq 0.\]

Case 2: $\zeta \in \partial(S_+) \setminus (S_- \cup E_1)$.

Then
\[\liminf_{S_+ \ni s \to \zeta} v(s) = f_k(\zeta) - 0 + \liminf_{S_+ \ni s \to \zeta} \varepsilon U_\lambda(s) \geq 0.\]

Case 3: $\zeta \in E_1$.

Then by the lower semicontinuity of U_λ,
\[\liminf_{S_+ \ni s \to \zeta} v(s) = \varepsilon U_\lambda(\zeta) = \infty.\]

Case 4: S is unbounded and $\zeta = \infty$.

Let B_1 be the support of f_k. For $s \in S$, we have
\[H_{f_k}(s) = \int_{S^c} f_k(y) \omega^S_{\alpha}(s,dy) \leq \int_{B_1} \omega^S_{\alpha}(s,dy) = \omega^S_{\alpha}(s,B_1) \leq \omega^T_{\alpha}(s,B_1) = \mathbf{P}^s(T^{B_1} \subset \infty).\]

By a formula of S.Port [13],
\[C_\alpha(B_1) = \lim_{s \to \infty} A(n,\alpha)^{-1} |s|^{n-\alpha} \mathbf{P}^s(T^{B_1} \subset \infty).\]

Hence $\lim_{s \to \infty} H_{f_k}(s) = 0$. This implies that
\[\liminf_{S_+ \ni s \to \infty} v(s) = \liminf_{S_+ \ni s \to \infty} \varepsilon U_\lambda(s) \geq 0. \tag{3.3}\]
Note here that we cannot apply the minimum principle of subsection 2.6 because the condition \(v \geq 0 \) in \((S_+)^c\) is not satisfied. Nevertheless, we will prove that \(v \geq 0 \) in \(S_+ \). Suppose that \(v \) takes on strictly negative values in \(S_+ \). Let

\[
\beta := \inf \{ v(s) : s \in S_+ \}.
\]

Take a sequence \(\{ s_k \} \) in \(S_+ \) such that \(v(s_k) \rightarrow \beta \). By passing to a subsequence if necessary, we may assume that \(\{ s_k \} \) converges in \(S_+ \). By the Cases 1-4 that we examined above, we may assume that \(\lim s_k = s_o \in S_+ \). The measure \(\lambda \) is not necessarily concentrated on \(E \) (see [12, p.181]). However, \(\lambda \) may be taken so that its support is as close to \(E \) as we wish; (see the proof of Theorem 3.1 in [12]). It is also known [12, Ch.I, §6] that the potential \(U^\lambda_o \) is an \(\alpha \)-harmonic function in the complement of the support of \(\lambda \). Hence \(v \) is \(\alpha \)-harmonic in a neighborhood of \(s_o \).

Hence

\[
0 = \Delta^{\alpha/2} v(s_o) = \int_{\mathbb{R}^n} \frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} \, m_n(dx)
\]

\[
= \int_{R^n_+} \frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} \, m_n(dx) + \int_{R^n_+} \frac{v(\hat{x}) - v(s_o)}{|\hat{x} - s_o|^{n+\alpha}} \, m_n(dx)
\]

(3.4)

\[
\geq \int_{R^n_+} \left[\frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} - \frac{v(x) + v(s_o)}{|x - s_o|^{n+\alpha}} \right] \, m_n(dx) =: I_1.
\]

We used above the equalities \(v(\hat{x}) = -v(x) + 2\varepsilon U^\lambda_o(x) \), \(U^\lambda_o(x) = U^\lambda_o(x) \), and \(|x - s_o| = |\hat{x} - s_o| \) which come from symmetry. Now we set \(A_1 = \{ x \in \mathbb{R}^n_+ : v(x) + v(s_o) \geq 0 \} \) and \(A_2 = \{ x \in \mathbb{R}^n_+ : v(x) + v(s_o) < 0 \} \). Using also the obvious inequality \(|x - s_o| > |x - s_o| \), we get

\[
I_1 = \int_{A_1} \left[\frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} - \frac{v(x) + v(s_o)}{|x - s_o|^{n+\alpha}} \right] \, m_n(dx)
\]

\[
+ \int_{A_2} \left[\frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} - \frac{v(x) + v(s_o)}{|x - s_o|^{n+\alpha}} \right] \, m_n(dx)
\]

\[
\geq \int_{A_1} \left[\frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} - \frac{v(x) + v(s_o)}{|x - s_o|^{n+\alpha}} \right] \, m_n(dx)
\]

\[
+ \int_{A_2} \frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} \, m_n(dx)
\]

\[
= \int_{A_1} \frac{-2v(s_o)}{|x - s_o|^{n+\alpha}} \, m_n(dx) + \int_{A_2} \frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} \, m_n(dx).
\]

Since \(v(s_o) < 0 \), the first integrand is positive. The second integrand is non-negative; indeed, if \(x \in \mathbb{R}^n_+ \setminus S_+ \), then \(v(x) - v(s_o) = f_k(x) + \varepsilon U^\lambda_o(x) - v(s_o) \geq 0 \) and if \(x \in S_+ \), then \(v(x) - v(s_o) \geq 0 \) by the definition of \(s_o \). Because of (3.4), we conclude that \(m_n(A_1) = 0 \) and \(v = v(s_o) \) a.e. in \(A_2 \). Hence \(v = v(s_o) < 0 \) a.e. in \(\mathbb{R}^n_+ \).

We proved above that the function \(v \) is equal to a negative constant a.e. in \(\mathbb{R}^n_+ \). This is absurd; indeed: (a) if \(m_n(\mathbb{R}^n_+ \setminus S_+) > 0 \) and \(x \in \mathbb{R}^n_+ \setminus S_+ \), then \(v(x) = f_k(x) + \varepsilon U^\lambda_o(x) \geq 0 \), (b) if \(m_n(\mathbb{R}^n_+ \setminus S_+) = 0 \), then \(S \) is unbounded and by (3.3), \(\lim_{S_+ \ni s \rightarrow -\infty} v(s) \geq 0 \).
The contradiction shows that \(v(s) \geq 0 \) for all \(s \in S_+ \). Since \(\varepsilon > 0 \) is arbitrary, (3.1) is proved. □

Theorem 2. Let \(D \) be an open set in \(\mathbb{R}^n \). Suppose that \(D \) is polarized with respect to the plane \(\Pi \). Let \(B \subset \mathbb{R}^n_+ \cap D^c \) be a Borel set. Then

(i) \(\omega^D_\alpha(x, B) \geq \omega^D_\alpha(\hat{x}, B) \), \(x \in \mathbb{R}^n_+ \cup \Pi \);

(ii) \(\omega^D_\alpha(x, B) \geq \omega^D_\alpha(x, \hat{B}) \), \(x \in \mathbb{R}^n_+ \cup \Pi \);

(iii) \(\omega^D_\alpha(x, B) + \omega^D_\alpha(\hat{x}, B) \geq \omega^D_\alpha(x, \hat{B}) + \omega^D_\alpha(\hat{x}, \hat{B}) \), \(x \in \mathbb{R}^n \);

(iv) \(\omega^D_\alpha(x, B) + \omega^D_\alpha(\hat{x}, B) \geq \omega^D_\alpha(\hat{x}, B) + \omega^D_\alpha(\hat{x}, \hat{B}) \), \(x \in \mathbb{R}^n \).

![Figure 2: An illustration for Theorem 2.](image-url)

Proof. Since \(D \) is polarized, the lower non-symmetric part of \(D \) is empty. Hence \(D = S \cup U \), where \(S \) is the symmetric part of \(D \) and \(U \) is the upper non-symmetric part of \(D \).

(i) If \(x \in (\mathbb{R}^n_+ \cup \Pi) \setminus S_+ \), the inequality (i) is trivial. So we assume that \(x = s \in S_+ \). By the strong Markov property,

\[
\omega^D_\alpha(s, B) = \omega^S_\alpha(s, B) + \int_U \omega^S_\alpha(s, du)\omega^D_\alpha(u, B)
\]

and

\[
\omega^D_\alpha(s, B) = \omega^S_\alpha(s, B) + \int_U \omega^S_\alpha(s, du)\omega^D_\alpha(u, B).
\]

By Theorem 1, \(\omega^S_\alpha(s, B) \geq \omega^S_\alpha(s, \hat{B}) \) and \(\omega^S_\alpha(s, du) \geq \omega^S_\alpha(s, du) \). So the inequality (i) is proved.

(ii) As in the proof of (i), we may assume that \(x = s \in S_+ \). Set \(S_1 := S \cup U \cup \hat{U} \). Then \(S_1 \) is an open set which is symmetric with respect to \(\Pi \) and contains \(D \). By the strong Markov property,

\[
\omega^D_\alpha(s, B) = \omega^{S_1}_\alpha(s, B) - \int_U \omega^D_\alpha(s, du)\omega^{S_1}_\alpha(u, B)
\]

and

\[
\omega^D_\alpha(s, \hat{B}) = \omega^{S_1}_\alpha(s, \hat{B}) - \int_U \omega^D_\alpha(s, du)\omega^{S_1}_\alpha(u, \hat{B}).
\]

By Theorem 1, \(\omega^{S_1}_\alpha(s, B) \geq \omega^{S_1}_\alpha(s, \hat{B}) \) and \(\omega^{S_1}_\alpha(u, \hat{B}) \geq \omega^{S_1}_\alpha(u, B) \), \(u \in \hat{U} \). So the inequality (ii) is proved.
(iii) By the inner regularity of α-harmonic measure, we may and do assume that B is a compact set in $\mathbb{R}^n \cap D^c$. Take a decreasing sequence of continuous functions $f_k : D^c \to [0,1]$ with $\text{supp} f_k \downarrow B$, $f_k \downarrow \chi_B$ and $f_k = 0$ in $(D^c)_{-}$. Let $f_k(x) = f_k(\hat{x})$, $x \in D^c$; ($f_k = 0$ in \hat{U}). Consider the sequences of functions

$$H_{f_k}(x) := \int_{D^c} f_k(y) \omega_\alpha^D(x,dy), \ x \in \mathbb{R}^n,$$

and

$$H_{\hat{f}_k}(x) := \int_{D^c} \hat{f}_k(y) \omega_\alpha^D(x,dy), \ x \in \mathbb{R}^n.$$&n

We have $H_{f_k}(x) \downarrow \omega_\alpha^D(x,B)$ and $H_{\hat{f}_k}(x) \downarrow \omega_\alpha^D(x,\hat{B})$, $x \in \mathbb{R}^n$. Therefore it suffices to prove that

$$H_{f_k}(x) + H_{f_k}(\hat{x}) \geq H_{\hat{f}_k}(x) + H_{\hat{f}_k}(\hat{x}), \ x \in \mathbb{R}^n, k \in \mathbb{N}.$$&n

Fix $k \in \mathbb{N}$ and define

$$v(x) = H_{f_k}(x) + H_{f_k}(\hat{x}) - H_{\hat{f}_k}(x) - H_{\hat{f}_k}(\hat{x}), \ x \in \mathbb{R}^n.$$&n

It is clear that v is α-harmonic in S. Note that for $u \in U$, $v(u) = H_{f_k}(u) - H_{\hat{f}_k}(u)$. So v is α-harmonic in D. It is also continuous in $\overline{D} \setminus E$, where E is the set of irregular points of ∂D. We will apply the minimum principle (Lemma 5) to the function v in the domain D.

Let $\zeta \in D^c$.

Case 1: If $\zeta \in \partial D \setminus (E \cup \hat{U})$, then

$$\lim_{D \ni x \to \zeta} v(x) = f_k(\zeta) + f_k(\hat{\zeta}) - \hat{f}_k(\zeta) - \hat{f}_k(\hat{\zeta}) = 0.$$&n

Case 2: If $\zeta \in (\partial D \cap \hat{U}) \setminus E$, then

$$\lim_{D \ni x \to \zeta} v(x) = f_k(\zeta) + H_{f_k}(\hat{\zeta}) - \hat{f}_k(\zeta) - H_{\hat{f}_k}(\hat{\zeta}) = H_{f_k}(\hat{\zeta}) - H_{\hat{f}_k}(\hat{\zeta})$$

$$= \int_{D^c} f_k(y) \omega_\alpha^D(\hat{\zeta},dy) - \int_{D^c} \hat{f}_k(y) \omega_\alpha^D(\hat{\zeta},dy)$$

$$= \int_{D^c} f_k(y) \omega_\alpha^D(\hat{\zeta},dy) - \int_{D^c} f_k(y) \omega_\alpha^D(\hat{\zeta},\overline{\partial}dy)$$

$$= \int_{(D^c)_{+}} f_k(y) [\omega_\alpha^D(\hat{\zeta},dy) - \omega_\alpha^D(\hat{\zeta},\overline{\partial}dy)] \geq 0.$$&n

Here $\omega_\alpha^D(\hat{\zeta},\overline{\partial}dy)$ is the measure μ on $(D^c)_{+}$ defined by $\mu(E) := \omega_\alpha^D(\hat{\zeta},E)$. The last equality holds because f_k is supported in $(D^c)_{+}$. The inequality comes from part (ii) of Theorem 2.

Case 3: If $\zeta \in (D^c) \setminus \hat{U}$, then $v(\zeta) = f_k(\zeta) + f_k(\hat{\zeta}) - \hat{f}_k(\zeta) - \hat{f}_k(\hat{\zeta}) = 0$.

Case 4: If $x = u \in \hat{U} \setminus \partial D$, then we work as in Case 2.

By Lemma 5, we conclude that $v \geq 0$ on D.

(iv) The proof is similar to the proof of (iii). □
Theorem 3. Let D be an open set in \mathbb{R}^n. Suppose that D is polarized with respect to the plane Π. Let $B \subset \mathbb{R}^n \cap D^c$ be a Borel set. Then

(i) $\omega_D^\alpha(x, B) \leq \frac{1}{2}$, $x \in D_+ \cup D_0$;
(ii) $\omega_D^\alpha(x, \hat{B}) \leq \frac{1}{2}$, $x \in D_+ \cup D_0$;
(iii) $\omega_D^\alpha(x, B) \leq \frac{1}{2}$, $x \in (\hat{D})_- \cup D_0$.

Proof. We will prove only the inequality (ii). The proof of (i) is similar and (iii) is equivalent to (ii) because of symmetry.

We write $D = S \cup U$, where S is the symmetric part of D and U is the upper non-symmetric part of D. Set $S_1 := D \cup \hat{U}$. Then S_1 is an open set, symmetric with respect to Π, and $D \subset S_1$. Using Theorem 1 we obtain

$$\omega_D^\alpha(x, \hat{B}) \leq \omega_{S_1}^\alpha(x, \hat{B}) \leq \omega_{S_1}^\alpha(x, B), \quad x \in D_+ \cup D_0.$$

Hence

$$\omega_D^\alpha(x, \hat{B}) \leq \frac{1}{2} \left[\omega_{S_1}^\alpha(x, \hat{B}) + \omega_{S_1}^\alpha(x, B) \right] = \frac{1}{2} \omega_{S_1}^\alpha(x, B \cup \hat{B}) \leq \frac{1}{2}.$$

□

We now turn to a sharp form of Theorem 2.

Theorem 4. Let D be an open set in \mathbb{R}^n. Suppose that D is polarized with respect to the plane Π. Let $B \subset \mathbb{R}^n \cap D^c$ be a Borel set which is not D-null. Then for $x \in D_+$, we have

(3.5) $\omega_D^\alpha(x, B) > \omega_D^\alpha(\hat{x}, B)$

and

(3.6) $\omega_D^\alpha(x, B) > \omega_D^\alpha(x, \hat{B})$.

Proof. First we prove (3.5). We write $D = S \cup U$, where S is the symmetric part of D and U is the upper non-symmetric part of D. If $x = u \in U$, then $\omega_D^\alpha(u, B) > 0$ because B is not D-null. On the other hand, $\omega_D^\alpha(\hat{u}, B) = 0$ because $\hat{u} \notin B$. Therefore (3.5) is proved in this case. So it remains to prove (3.5) for $x = s \in S_+$. Consider the function

$$v(x) = \omega_D^\alpha(x, B) - \omega_D^\alpha(\hat{x}, B), \quad x \in \mathbb{R}^n.$$
Then \(v \) is \(\alpha \)-harmonic in \(D \) and by Theorem 2,
\[
(3.7) \quad v(x) \geq 0, \quad x \in \mathbb{R}^n_+.
\]
Also, it is obvious that
\[
(3.8) \quad v(x) + v(\hat{x}) = 0, \quad x \in \mathbb{R}^n_+.
\]
We want to prove that
\[
(3.9) \quad v(s) > 0, \quad s \in S_+.
\]
Suppose that \(v(s_o) = 0 \) for some \(s_o \in S_+ \). Since \(v \) is \(\alpha \)-harmonic in \(D \),
\[
0 = \Delta^{\alpha/2} v(s_o) = \int_{\mathbb{R}^n} \frac{v(x) - v(s_o)}{|x - s_o|^{n+\alpha}} m_n(dx) = \int_{\mathbb{R}^n} \frac{v(x)}{|x - s_o|^{n+\alpha}} m_n(dx)
\]
\[
= \int_{\mathbb{R}^n} \left[\frac{v(x)}{|x - s_o|^{n+\alpha}} - \frac{v(s_o)}{|s_o|^{n+\alpha}} \right] m_n(dx)
\]
\[
= I_1 + I_2 + I_3 + I_4,
\]
where
\[
I_1 := \int_{S_o} v(s) \left[\frac{1}{|s - s_o|^{n+\alpha}} - \frac{1}{|s_o|^{n+\alpha}} \right] m_s(ds),
\]
\[
I_2 := \int_U v(u) \left[\frac{1}{|u - s_o|^{n+\alpha}} - \frac{1}{|u - s_o|^{n+\alpha}} \right] m_u(du)
\]
\[
= \int_U \omega^D_\alpha(u, B) \left[\frac{1}{|u - s_o|^{n+\alpha}} - \frac{1}{|u - s_o|^{n+\alpha}} \right] m_u(du),
\]
\[
I_3 := \int_B v(x) \left[\frac{1}{|x - s_o|^{n+\alpha}} - \frac{1}{|x - s_o|^{n+\alpha}} \right] m_n(dx),
\]
\[
= \int_B \left[\frac{1}{|x - s_o|^{n+\alpha}} - \frac{1}{|x - s_o|^{n+\alpha}} \right] m_n(dx),
\]
\[
I_4 := \int_{(D_+) \cap B} v(x) \left[\frac{1}{|x - s_o|^{n+\alpha}} - \frac{1}{|x - s_o|^{n+\alpha}} \right] m_n(dx).
\]
Since \(v = 0 \) in \((D_+) \cap B \), we have \(I_4 = 0 \). Because of the obvious inequality
\[
|x - s_o| < |x - \hat{s}_o|, \quad x \in \mathbb{R}^n_+,
\]
the integrands in \(I_1, I_2, I_3 \) are non-negative. Therefore \(I_1 = I_2 = I_3 = 0 \). We conclude that \(m_n(U) = 0 \), \(m_n(B) = 0 \) and \(v = 0 \) m.a.e. in \(S \). Since \(v \) is continuous in \(D \), we conclude that \(v = 0 \) in \(S \) which means that
\[
(3.10) \quad \omega^D_\alpha(s, B) = \omega^D_\alpha(\hat{s}, B), \quad s \in S.
\]
The fact that \(m_n(B) = 0 \) implies that (see [4], [15]) the set \(B \cap (\overline{D})^c \) is \(D \)-null; hence the set \(B \cap \partial D \) is not \(D \)-null. Thus, by [15, Lemma 1], we have
\[
\sup_{x \in D} \omega^D_\alpha(x, B) = 1.
\]
Take a sequence \(\{x_k\} \) in \(D \) such that
\[
(3.11) \quad \lim_{k \to \infty} \omega^D_\alpha(x_k, B) = 1.
\]
By Theorem 3, we may assume that $\{x_k\} \subset D_+$. Since D_+ is open set and $m_\alpha(U) = 0$, every neighborhood of x_k contains a point $s_k \in S_+, \ k \in \mathbb{N}$. So, by the continuity of α-harmonic measure in D, we can choose a sequence s_k in S_+ such that

$$\lim_{k \to \infty} \omega_\alpha^D(s_k, B) = 1.$$

Then, again by Theorem 3,

$$\limsup_{k \to \infty} \omega_\alpha^D(s_k, B) \leq \frac{1}{2}.$$

This together with (3.12) contradict (3.10). So (3.9) is proved.

We now turn to the proof of (3.6). We consider the function

$$h(x) = \omega_\alpha^D(x, B) - \omega_\alpha^D(x, \hat{B}), \ x \in \mathbb{R}^n.$$

We know from Theorem 2 that

$$h(x) \geq 0, \ h(x) + h(\hat{x}) \geq 0, \ x \in \mathbb{R}^n_+.$$

We want to prove that

$$h(x) > 0, \ x \in D_+.$$

Suppose that $h(x_0) = 0$ for some $x_0 \in D_+$. Since h is α-harmonic in D,

$$0 = \Delta^{\alpha/2} h(x_0) = \int_{\mathbb{R}^n} h(x) - h(x_0) \frac{m_\alpha(dx)}{|x - x_0|^{n+\alpha}}$$

$$= \int_{\mathbb{R}^n_+} \frac{h(x)}{|x - x_0|^{n+\alpha}} m_\alpha(dx) + \int_{\mathbb{R}^n_+} \frac{h(x)}{|x - x_0|^{n+\alpha}} m_\alpha(dx)$$

$$= \int_{\mathbb{R}^n_+} \frac{h(x)}{|x - x_0|^{n+\alpha}} m_\alpha(dx) + \int_{\mathbb{R}^n_+} \frac{h(\hat{x})}{|\hat{x} - x_0|^{n+\alpha}} m_\alpha(dx)$$

$$= \int_{\mathbb{R}^n_+} \left\{ h(x) + h(\hat{x}) + h(x) \left[\frac{1}{|x - x_0|^{n+\alpha}} - \frac{1}{|\hat{x} - x_0|^{n+\alpha}} \right] \right\} m_\alpha(dx) =: J.$$

As in the proof of (3.5), we find that $J = J_1 + J_2 + J_3$, where

$$J_1 := \int_{S_+} \left\{ \frac{h(s) + h(\hat{s})}{|s - x_0|^{n+\alpha}} + h(s) \left[\frac{1}{|s - x_0|^{n+\alpha}} - \frac{1}{|\hat{s} - x_0|^{n+\alpha}} \right] \right\} m_\alpha(ds),$$

$$J_2 := \int_{U} \frac{h(u)}{|u - x_0|^{n+\alpha}} m_\alpha(du),$$

$$J_3 := \int_{B} \left[\frac{1}{|x - x_0|^{n+\alpha}} - \frac{1}{|x - x_0|^{n+\alpha}} \right] m_\alpha(dx).$$

Using (3.13) we conclude that $m_\alpha(B) = 0$ and that $v = 0$ in S_+ which means that

$$\omega_\alpha^D(s, B) = \omega_\alpha^D(s, \hat{B}), \ s \in S.$$

By (3.15) and the fact that B is not D-null we infer that \hat{B} is not D-null. Since $m_\alpha(\hat{B}) = m_\alpha(B) = 0$, the set $\hat{B} \cap \partial D$ is not D-null. By [15, Lemma 1], we thus have

$$\sup_{x \in D} \omega_\alpha^D(x, \hat{B}) = 1.$$
Take a sequence \(\{y_k\} \) in \(D \) with \(\omega_\alpha^D(y_k, \hat{B}) \to 1 \). Since \(\hat{B} \subset \mathbb{R}^n \), Theorem 3 implies that we may assume that \(y_k \in D_+ = S_+, k \in \mathbb{N} \). Then (3.15) gives \(\omega_\alpha^D(y_k, B) \to 1 \). But Theorem 3 implies \(\omega_\alpha^D(y_k, B) \leq 1/2 \). This contradiction proves (3.14). \(\square \)

Theorem 5. Let \(D \) be an open set in \(\mathbb{R}^n \). Suppose that \(D \) is polarized with respect to the hyperplane \(\Pi \), i.e. \(D = S \cup U \), where \(S \) is the symmetric part of \(D \) and \(U \) is the upper non-symmetric part of \(D \). Let \(B \subset \mathbb{R}^n \cap D^c \) be a Borel set which is not \(D \)-null.

(i) \[
(3.16) \quad \omega^D_\alpha(s_\alpha, B) + \omega^D_\alpha(s_\alpha, \hat{B}) = \omega^D_\alpha(s_\alpha, \hat{B}) + \omega^D_\alpha(s_\alpha, \hat{B})
\]
for some \(s_\alpha \in S \) if and only if \(C_\alpha(U) = 0 \).

(ii) \[
(3.17) \quad \omega^D_\alpha(s_\alpha, B) + \omega^D_\alpha(s_\alpha, \hat{B}) = \omega^D_\alpha(s_\alpha, B) + \omega^D_\alpha(s_\alpha, \hat{B})
\]
for some \(s_\alpha \in S \) if and only if \(C_\alpha(U) = 0 \).

(iii) \[
(3.18) \quad \omega^D_\alpha(s_\alpha, B) = \omega^D_\alpha(s_\alpha, \hat{B})
\]
for some \(s_\alpha \in S_\alpha := S \cap \Pi \) if and only if \(C_\alpha(U) = 0 \).

Proof. We prove only (i); the proofs of (ii) and (iii) are similar.

Suppose that (3.16) holds for some \(s_\alpha \in S \). By the strong Markov property,

\[
(3.19) \quad \omega^D_\alpha(s_\alpha, B) = \omega^S_\alpha(s_\alpha, B) + \int_U \omega^S_\alpha(s_\alpha, du) \omega^D_\alpha(u, B),
\]

\[
(3.20) \quad \omega^D_\alpha(s_\alpha, \hat{B}) = \omega^S_\alpha(s_\alpha, \hat{B}) + \int_U \omega^S_\alpha(s_\alpha, du) \omega^D_\alpha(u, \hat{B}),
\]

\[
(3.21) \quad \omega^D_\alpha(s_\alpha, \hat{B}) = \omega^S_\alpha(s_\alpha, \hat{B}) + \int_U \omega^S_\alpha(s_\alpha, du) \omega^D_\alpha(u, \hat{B}),
\]

\[
(3.22) \quad \omega^D_\alpha(s_\alpha, \hat{B}) = \omega^S_\alpha(s_\alpha, \hat{B}) + \int_U \omega^S_\alpha(s_\alpha, du) \omega^D_\alpha(u, \hat{B}).
\]

Hence

\[
\int_U [\omega^S_\alpha(s_\alpha, du) + \omega^S_\alpha(s_\alpha, du)] \omega^D_\alpha(u, B) = \int_U [\omega^S_\alpha(s_\alpha, du) + \omega^S_\alpha(s_\alpha, du)] \omega^D_\alpha(u, \hat{B}).
\]

By Theorem 4, \(\omega^S_\alpha(u, B) > \omega^D_\alpha(u, \hat{B}) \) for all \(u \in U \). Hence \(\omega^S_\alpha(s_\alpha, du) + \omega^S_\alpha(s_\alpha, du) \) is the zero measure on \(U \). This implies \(\omega^S_\alpha(s_\alpha, U) = 0 \), i.e. \(U \) is \(S \)-null. By Lemma 3, \(C_\alpha(U) = 0 \).

Conversely, if \(C_\alpha(U) = 0 \), then \(U \) is \(S \)-null. Therefore (3.19)-(3.22) imply

\[
\omega^D_\alpha(s, B) + \omega^D_\alpha(\hat{s}, B) = \omega^D_\alpha(s, \hat{B}) + \omega^D_\alpha(\hat{s}, \hat{B})
\]
for all \(s \in S \). \(\square \)

Theorem 6. Let \(D \) be an open set in \(\mathbb{R}^n \). Suppose that \(D \) is polarized with respect to the hyperplane \(\Pi \), i.e. \(D = S \cup U \), where \(S \) is the symmetric part of \(D \) and \(U \) is the upper non-symmetric part of \(D \). Let \(B \subset D^c \) be a Borel set which is symmetric with respect to \(\Pi \) and is not \(D \)-null. Then

\[
\omega^D_\alpha(s, B) = \omega^D_\alpha(\hat{s}, B)
\]
for some \(s \in S_+ \) if and only if \(C_\alpha(U) = 0 \).
Proof. Similar to the proof of Theorem 5.

References